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Abstract
Abundance, the primary criterion used for management and conservation decision-making, is very difficult to estimate for carnivores,
especially highly mobile, wide-ranging wolves. Due to their economic and ecological importance to game management, society, and
ecosystemhealth, reliablemethods are necessary for wolves. The recently developed integrated patch occupancymodel (iPOM) claims to
provide improved accuracy of carnivore abundance at finer scaleswhile reducing cost.We evaluate its input datamodels, potential biases,
precision, sampling design, model coherence, validation, and reproducibility. Testing their method’s sensitive and vital assumptions to
estimate the area occupied by wolf territories revealed that three sources of bias: false positive errors, closure violations, and resolution,
combined to cause a substantial overestimation of abundance. The crucial confirmation step to independently determine individual wolf
territorial centroids was eliminated, leading to a severe overestimation due to three sources of double-counting errors andmortality that
occurred just before and during the survey period. iPOM lacks an inferential sampling design and relies upon a flawed survey of hunters’
inadvertent recollections of wolf sightings. It also includes a static and deficient covariate model, which limits the ability to correct for
the sources of overestimation bias. The variancemethod used to report a confidence interval is incorrect and omits multiple components
of variation, resulting in substantial underreporting of uncertainty. With many recommendations for improvement, we conclude that
iPOM produces unreliable predictions, is irreproducible, and is misleading by reporting accurate and precise abundance predictions
when abundance is severely biased (overestimation) and imprecise.
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1. Introduction
Population size (abundance) is the leading criterion agencies use
to manage and restore species populations and make critical de-
cisions such as listing or delisting species. A reliable estimate,
unbiased and precise over time, provides an efficient metric to
account for the actions of decision-makers who can then adap-
tively respond and form sound policy [1, 2]. This is important
for large mammal populations, especially of carnivores, which
humans have severely reduced through a loss of habitat and
government-led eradication campaigns that began in the 18th
century. Their subsequent population declines have negatively
impacted ecosystems through density-mediated trophic interac-
tions (see [3, 4] for a review). When reliable carnivore abun-
dance methods are embedded within an annual learning cycle,
agencies can make adaptive decisions that effectively respond
to changing conditions [2]. These iterations will have numerous
and diverse benefits for game management and humans through
the socioeconomic and ecosystem services carnivore populations
provide [5–8], mainly through cumulative trophic pathways [9].

Unfortunately, large carnivore abundance is notoriously difficult
to determine. Because they exist at low densities, display high
mobility over large landscapes, are cryptic in their behavior, and
exhibit aversive responses to people and to capture, they rarely

lend themselves to complete enumeration or design-based ap-
proaches like survey sampling methods [10] that rely upon a
probability structure inherited from randomized data collection.
Instead, a model-based approach is used that depends upon
assumptions of a stochastic model of the sample data and the
sampling process [11], which can include marked or unmarked
individuals. Individual marking of individuals or groups, like ter-
ritorial packs, is highly preferred because raw unmarked counts
are often misleading due to missing individuals that are not seen
or duplicate observations of the same animal or group. Further-
more, suchmarking,whether physical, like using radio-collars and
ear tags, or based on natural unique features, enables researchers
to construct encounter histories, estimate detection probabilities,
and account for detection errors by using distinguishing marks
as the primary or secondary method (e.g., [12]). Collectively,
this reduces biases caused by heterogeneous detection rates and
imperfect detectability present in carnivore populations. As a
result, nearly all carnivore studies and most mammal studies use
mark–recapture and/or mark–resight ([13, 14] for carnivores)
sampling methods in a model-based inference framework. An up-
dated review of recent and related studies on wildlife population
estimation methods can be found in Mills et al. ([15], chapter 4).
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Wolves further exacerbate the challenges of estimating abundance
because statistical models must be structured to account for high
levels of heterogeneity in space and time owing to their complex
socio-spatial behavior and seasonal response to ungulates, their
primary prey. Furthermore, wolves do not lend themselves to
the traditional, well-developed estimation methods like distance
sampling, aerial surveys, or direct capture–recapture commonly
used with vertebrate species. As a result, few reliable, transpar-
ent, and repeatable methods are commensurate with large car-
nivores’ high economic, social, and ecological importance. Thus,
much more attention is needed to develop, test, and evaluate
new statistical models for wolf population abundance with a keen
focus on their inherent biases, measures of precision (variance),
field sampling designs, and other model properties that affect the
ability to make valid inferences, which, in turn, will provide the
information required to sustain wise decision-making and avoid
costly mistakes. Reproducible methods, data sharing, and open
validation of model assumptions and output—all open to inde-
pendent review and public debate—will enhance the governance
process and benefit public trust resources.

Here, we evaluate a newly developed method [16] called the inte-
grated patch occupancy model (iPOM), which is representative of
several new methods that non-traditionally apply spatial models
to estimating abundance from observations of unmarked animals.
We identify potential biases in iPOM’s numerous components by
testing assumptions—biologically and statistically—and, where
possible, determine the direction and magnitude of these biases.
Because spatial models are particularly sensitive to assumptions
regarding animal space use, we focus on iPOM’s use of occupancy
modeling—its input data model, sampling design, and model bi-
ases. We also evaluate iPOM’s second spatial model, an agent-
based simulator that predicts territory size. These two spatial
models determine the number of wolf packs which is the effective
population unit for policy and management and also provide
an understanding of ecological interactions and their functional
value [17–19]. We then evaluate and test their variance estimates
used to report uncertainty with their calculated confidence inter-
vals for the statewide wolf population abundance. Next, because
of iPOM’s complexity, we assess iPOM’s alignment with model
coherency and reproducibility. Finally, we provide constructive
criticism on improvement and a framework for biologists, the
broader conservation community of decision-makers, and the
public to assess any statistical model to determine the abundance
of a challenging species.

2. Evaluation criteria
Bias and variance are the two fundamental criteria used to evalu-
ate the quality of any statistical method that attempts to estimate
or predict abundance and if, when, and how it should be used.
Their minimization is the bedrock of valid inference, as both con-
tribute tomodel error (uncertainty). Althoughmanagers primarily
make decisions using the numerical value of abundance (the point
estimate), its variance is also used to reliably track and detect
changes over time and communicate ranges of possibility when
thresholds are set by policy or law. We define the term reliability
as the ability of a method to provide unbiased and precise mea-
sures of abundance over time. High variance adds uncertainty to
the point that inference cannot be made for scientifically valid
decision-making on quotas and minimum populations.

As independent attributes, these criteria differ because variance
can be directly estimated from the sample data, whereas bias
cannot. Thus, the only means to evaluate the bias of an estimation
method is to state and test the validity of the model assumptions,
which places full responsibility on developers and users to con-
duct such testing. Biological and statistical testing determines the
likelihood of a bias and whether it is a negative or positive bias
(or under- or overestimates the true value, respectively). Testing
can also include simulation testing of potential model biases to
determine the direction and magnitude of bias.

If a prediction of abundance is biased or has a high variance, then
three of four possible outcomes (Figure 1) are deemed unreli-
able. If bias is ignored, decision-makers (managers, biologists,
judges, conservationists, and policymakers) will likely face two
outcomes (Figure 1C,D). Predictions become more uncertain
and unreliable if the variance is high (Figure 1B,D). Even worse
is a precarious, misleading situation when one claims the point
estimate is unbiased and precise (Figure 1A) when, in fact, there
is overestimation bias, and the variance provides false (overesti-
mated) confidence (Figure 1D).

Figure 1 • Four scenario outcomes for the two independent
attributes used to assess the quality of an estimation or prediction
method. Bias is the distance between the red dots and the target’s
center; precision, measured by the variance, is the spread of the
red dots. (A) is unbiased and precise; (B) is unbiased and impre-
cise; (C) is biased and precise; and (D) is biased and imprecise.
They are graphically analogous to shooting a rifle at a target, where
the shot taken is the value of abundance (the point estimate). If
the shooter’s grip is shaky, then the variance (spread of shots) is
higher (B,D) than with a steady hand (A,C). Bias is where the
sighting of the rifle (curved barrel, bad scope) is “off” and shots are
consistently off-center (C,D) versus on-center or unbiased (A,B).

Another fundamental concept for evaluating a statistical model is
the tradeoff between bias and variance (Figure 2). When bias is
detecteddue to failed tests of assumptions, investigators appropri-
ately respond by adding variables (called covariates) to decrease
these biases. In turn, this increases variance and often increases
model complexity.
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Figure 2 • The tradeoff between precision and bias. Model
complexity increases when investigators select parameters in the
model (covariates) to decrease bias, which in turn increases vari-
ance given the sample data. Variance can be calculated from the
sample data, whereas bias can only be assessed through biological
and statistical testing of the model’s assumptions. Thus, testing
is required to design a statistical model that optimizes these
tradeoffs by minimizing model error (variance + bias2) with the
efficient use of covariates—using the fewest minimally sufficient
set of causal covariates that substantially reduces or eliminates
biases. As the error of a statistical estimator increases, its ability
to make inferences and successfully predict declines.

Investigators attempt to optimize reliability by minimizing model
error by carefully adding covariates assumed to be causal, inde-
pendent, and not confounding. However, serious problems arise
when added covariates do not adequately capture and account for
heterogeneity in space, time, and behavior.We highlight in partic-
ular the problem of including static covariates that are insensitive
to changes in conditions under the control of investigators or
policymakers. Conversely, and more problematic, is a deficient
model where the analysis proceeds knowing causal covariates are
missing [20]. Because iPOM combines submodels withinmultiple
models and obtains direct and indirect samples from different
populations at different times and spatial scales, we necessarily
assessmodel coherence inmaking valid inferences. Finally, it is vi-
tally important to ensure that a method or experiment, especially
a new one, is reproducible—a cornerstone of science. This requires
a transparent and adequate description of all methods and the
sharing of data and analysis results from model components.

We acknowledge that analyzingmessy ecological field data reveals
numerous issues, potential biases, and problems. We also realize
that compromise is nearly always a part of this process. With
recommendations, we specifically focus on essential issues that
can be improved upon with testing, verification, revision, and
retesting—the iterative cycle of gaining reliable knowledge. We
aim to lay out a path forward that eliminates or minimizes the
problems that cripple inference.

3. Background on iPOM
With the recent reintroduction and expansion of wolves in the
lower 48 states, some state agencies have abandoned field ef-
forts to individually mark wolves to estimate abundance and

other important demographic parameters (litter size, pack size,
survival, dispersal) in favor of using new lower-cost methods to
infer their abundance [21–23] using spatial models that reduce
or replace empirical field sampling. This should raise concerns
about uncertainty and reliability because nearly every field study
of wolves, including those in Montana, Idaho, and Wyoming, has
investigated their demography and complex social and spatial
system using a sufficiently large sample of distinguishable marks
on individuals (natural and radio- and GPS-marking) to account
for the numerous and complex sources of heterogeneity causing
bias. As a result, sampling of marked carnivores has become a
widely accepted consensus method for estimating demographic
parameters, especially abundance [24–26].

Recently, Idaho and Montana eliminated a radio-collaring pro-
gram for wolf population monitoring statewide and instead tran-
sitioned to indirect observations (hunter surveys, cameras) of
unmarked animals. For example, iPOM’s goal is to integrate basic
and applied research to provide accurate estimates of wolf abun-
dance to inform decision-making and meet management needs
while reducing reliance on intensive field monitoring efforts [16].
It combines three main models, area occupied (AO), territory size
(TS), and pack size (PS), as well as additional correction factors,
indices, and constants. Although [16] did not provide a coherent
mathematical equation for wolf abundance specific to their sam-
pling design, it did present submodel equations and an overall
graphic illustration ([16], Figure 1) tomapout how iPOMarrives at
abundance. For clarity, we provide generalized equations (1 and 2)
to help explain iPOM’s deviation from past and current methods.

For decades, agencies have estimated abundance through field
enumeration or estimating the number of packs (NP) yearly [17–
19, 24]. This sampling is verified by tracking radio-collared
wolves to eliminate, or correct for, the persistent problem of
double-counting packs, which is a common problem when re-
lying on indirect signs (sightings, howling, scat, tracks, etc.).
NP is then multiplied by empirical estimates of pack size
(Equation (1)). Although these approaches have recently been
discontinued in Idaho andMontana, they are currently being used
to monitor wolves in Wyoming, Colorado, Oregon, Washington,
and California.

iPOM and similar models called the patch occupancy model
(POM [21]) and the scaled occupancy model (SOM [22]) first
deviated from the normal annual field sampling of wolf packs
(Equation (1)) by substituting a spatial modeling approach
called occupancy modeling to first estimate the AO by territorial
wolf packs and then dividing by the mean or median territory
size to calculate NP. The POM, the SOM, and iPOM each use
different versions of occupancy modeling to estimate the AO by
stable territorial wolf packs. iPOM goes further and drops the
normal empirical sampling approach to predicting TS and substi-
tutes a second spatial model [27] that simulates TS. Thus, in an
apparent attempt to reduce field costs and improve accuracy [16],
iPOM substitutes two spatial models (AO and TS) for the normal
empirical field sampling for NP (Equation (1)). Finally, iPOM
further departs from annual empirical sampling to predict pack
size (PS) using a regression model [16] to determine the total
number of individual wolves belonging to the modeled territorial
packs in Equation (2).

Ni = NPi × PSi (demographic without spatial modeling) (1)

Ni =
(∑

AOj

)
i
× (1/TS)i × PSi (spatial models included) (2)
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where N is the abundance of territorial pack members in the
year i, and j designates each 600 km2 grid cell that is summed
across Montana. To account for the assumed small proportion
of lone wolves (LW) not belonging to a pack, iPOM calculates a
proportion, converts it into a multiplicative rate (1 + LW), and
then includes it in the multiplication sequence in Equation (2).
It is important to note that random variable N is a function of four
random variables, AO, TS, PS, and LW, that all contain numerous
components of variation to be included in the variance in N used
to report uncertainty.

While iPOM should be a valid theoretical approach
(Equation (2)), it is not an integrated model. Instead, it is
a component model that combines three main models (assumed
independent) in a sequential multiplicative series. Integration
refers to integrated population models (IPMs) used extensively
to estimate the parameters of wildlife populations ([28, 29] for
wolves in Idaho). IPMs are coherent and thus have numerous
advantages over iPOM, including demographic mechanisms,
reconciling spatial and temporal mismatch, estimating
unmeasured demographic rates, density dependence, and
assimilating overlapping data inputs from multiple sources [30].

Because wolves are exceptionally mobile, express complex social
and territorial behaviors that vary seasonally, and range widely
across heterogeneous landscapes, we examine the sensitivity of
iPOM’s spatial models that determine the territorial area a wolf
pack observation represents. This directly affects the first two
most critical of the four basic assumptions of this AO occupancy
model: (1) the occupancy state of a grid cell remains constant be-
tween sampling times (the closure assumption); (2) no false detec-
tions of wolf packs—detections are representative of the wolf ter-
ritories; (3) grid cells are independent spatially and temporally—
the outcome of one survey does not influence the outcome of
another survey site during the same season; and (4) a constant
detection probability—the likelihood of detecting a wolf pack is
consistent across all survey sites for a given sampling occasion.
Recent improvements [31] have relaxed these assumptions by
incorporating covariate submodels in an attempt to reduce bias.
However, among the four basic assumptions, the closure assump-
tion is arguably the most commonly violated [32, 33]. It leads to
overestimation bias for wide-ranging, highly mobile species like
wolves. Closure can be violated in two ways: geographic changes
inmovement (immigration, dispersal, extra-territorial forays) and
demographic changes (deaths) during the surveys.

To estimate the AO, iPOM uses a dynamic occupancy
model [12, 34] designed to correct detection errors, especially
false positives (e.g., a detection is recorded but the wolf territory
is absent). Dynamic occupancy models, first developed by
MacKenzie et al. [35] with developments by Royle and Link [36]
and Miller et al. ([34] used in iPOM), offer an initial framework
for designing and analyzing large-scale animal distribution
data. Such occupancy models reduce detection errors using
covariate models that have additional assumptions, including
those governing their selection in generalized linear models
(see [37] for a review). These models allow for a change in
occupancy between years. Still, occupancy must stay closed
during the annual surveys, i.e., the territory and its spatial extent
that observed wolf groups belong to must stay intact and remain
stable, respectively, during iPOM’s late fall survey period.

iPOM’s occupancy modeling aims to separate the underlying bio-
logical processes driving distributional changes inwolf packs from
the observational process, which begins with surveys of hunters’
recollections of passive wolf pack observations from an unspeci-
fied portion of the survey units they are hunting. In iPOM, these
units, called patches, aremutually exclusive, non-overlapping 600
km2 grid cells and are pseudo-surveyed by subdividing post hoc
hunter survey information into five one-week periods during the
late fall hunting season. Wolf specialists sort through information
and other indirect wolf signs to create two submodels: a critical
“certain” data model built with unambiguous spatial observations
of confirmed wolf pack territories (no false positives allowed) and
an “uncertain” model from hunter surveys. The “certain” data
model (the centroid model, hereafter) requires a confirmation
step from a secondmethod (e.g., tracking collared packmembers)
to confirm that the demarcated territory centroids are singular
and unique from adjacent territorial packs before it is applied
to estimating occupancy in uncertain and no-detection grid cells
across Montana. Further description of iPOM’s dynamic occu-
pancy model can be found in Miller et al. [12].

Territory size (TS) in iPOM is determined by a simulation model
developed usingNetLogo, a software environment for basic agent-
based simulations [38]. It uses numerous cost/benefit rules (each
is an assumption) for patch ownership (occupancy), and territorial
ownership dynamics are simulated for 127 packs on a grid with
a cell area of 1 km2 for Montana. It then maps spatially explicit
territories and generates TS and the number of territorial packs
(NP), which is not used in iPOM. It is important to note that
iPOM’s territory simulationmodel does not use any annual inputs
of empirical sample data from Montana’s wolf population. To
predict PS, iPOM uses a Poisson regression of past empirical data
on wolf pack sizes [16, 39] and environmental covariates.

4. Input data and sampling design
We found the creation of the AO data model and its sampling
design to be highly problematic with numerous sources of error.
Such errors can cause bias in all three of iPOM’smodels because all
use centroid information (violation of the independence assump-
tion). These include assumption violations, the post hoc hunter
surveys, the spatial sampling design, and the quality and timing
(design) of the hunter surveys. iPOM’s AO data model parallels
the assumptions in mark–recapture methods: detections are cor-
rectly classified (marks are not lost) and are correctly recorded.
iPOM’s methods are far removed from the simple process in
mark–recapture models, where these assumptions are seldom
violated because the same trained individual(s) administers the
distinguishable, uniquemark and then carefully records it in near-
real time (several days). In contrast, iPOM has a lengthy, arduous
process, from hunter surveys to wolf specialists determining the
quality and type (certain or uncertain) of observations used to
hand-mark territorial centroids of wolf packs on a map. Staff
and volunteers from Montana Fish, Wildlife and Parks (MFWP)
primarily conduct phone interviews to determine a hunter’s rec-
ollection of (1) the observation type (sightings, howl, scat, carcass,
tracks), (2) the correct grid cell location, and (3) the correct
time (week). We do not see any data verification, standardized
protocols, or definitions used to sort through hunter survey data,
nor through thewolf observations and indirect signs used to create
the sensitive centroidmodel [16], whichwill directly inflate theAO
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and abundance (overestimation), even with small false-positive
errors [40].

4.1. Quality of sampled hunter survey observations

Although there is increasing reliance on public members to con-
tribute to data collection [41], there is a long list of potential bi-
ases in unstructured surveys by public members, especially when
they are untrained or asked to recall observations afterwards, as
in iPOM [16]. They plague monitoring efforts [42] and include
cognitive bias leading to over-detecting a popular, charismatic, or
controversial species (false-positive error). Other sources of bias
stem from changes in field efforts over time (observation bias),
incomplete and selective recording by observers (reporting bias),
and geographical bias and detection bias [43]. Anderson [44]
questioned why one would survey deer hunters as a basis for
inference about humans. Similarly, why would one sample deer
hunters’ inadvertent recollections to make inferences about wolf
populations, instead of sampling wolves directly?

In addition, observations of species not traceable to tangible ma-
terial, such as museum specimens or digital recording devices
(e.g., camera traps), include biases that may render them ineffi-
cient in representing occurrence and distribution [45]. Instead,
Greenwood [41] recommends trained, recruited, retained, and ex-
perienced observers who use standardized protocols, transparent
QA/QC, and validation. He further recommends independence
from government and conservation organizations when political
or personal motivations are present. Altwegg and Nichols [46]
state that observations by members of the public can be valuable
but present analytical challenges due to the observation process
and thus advocate strengthening inference by designing surveys
with specific questions, analysis strategies, and data characteris-
tics in mind.

Unfortunately, iPOM does not recognize or adhere to the many
criteria, recommendations, and concerns listed above. However,
Miller et al. [12] did verify their initial centroid model using the
rich information obtained from radio-collared wolves to ensure
that each centroid designated a singular, unique wolf territory.
Since then, this verification step has been eliminated from iPOM.
Hunter’s ability to distinguish coyotes from wolves under field
conditions using indirect methods in MFWP hunter surveys is
unknown, as is their ability to distinguish lone wolves from pack-
living wolves. Even trained biologists make errors in field estima-
tions of wolves from the size of carcasses [47], let alone distant
animals, which are probably sometimes seen fleetingly.

4.2. Hunter survey sampling design and closure
violations

iPOM essentially lacks a sampling design. Sells et al. [16] did
not include the criteria commonly used to develop and plan a
proper sampling design. These criteria include the selection of
appropriate spatial and temporal scales, the incorporation of in-
formation appropriate to the time and place (e.g., empirical pack
sizes), alignment of sampling units and efforts with observational
and ecological processes, sample size consideration, and inherent
environmental heterogeneity. And in their context, we would also
like to know more about the observers, i.e., hunter behavior,
independence, and validation. We found numerous problems and
assumption violations in the decisions they made.

The fall timing exacerbates false-positive errors, closure viola-
tions, and errors in predicting PS. Closure was likely violated
geographically and demographically in late fall (1) because many
young adult wolves disperse from the pack then [48–50], (2) be-
cause non-dispersing pack members can split into smaller groups
and make extraterritorial movements [48, 51] prior to the forma-
tion of cohesive groups in the winter mating season, (3) due to
mortality during the wolf hunting season, which starts in early
September and continues through the late fall iPOM surveys, and
(4) due to pack dissolution, which amplifies closure violations (see
Section 5.1). By definition, pack size is estimated in the winter
when social groups are most cohesive [52] and when 10-month-
old pups are considered pack members [51, 52]. Additionally, this
adds another source of double-counting error because of the diffi-
culty in distinguishing between adults and the nearly adult-sized
7- to 8-month-old pups that split off and travel together during
the fall survey period. Finally, iPOM’s five consecutive one-week
periods of observation during the fall hunting season further
violate assumptions because they are not temporally independent
of each other nor randomized, which enhances closure violations.

iPOM used an inadvisable ‘rule of thumb’ to choose the resolution
of its grid cell size to match the reported territory size of 600
km2 [16, 21]. MacKenzie [53] recommends explicitly selecting
a grid cell smaller than the average home range size to ensure
detection if the species of interest is wide-ranging and highly
mobile because it could be in another portion of its home range
during observations, especially if one does not survey the entire
grid cell, as in iPOM. Furthermore, our simulations and those of
Stauffer [22] indicate that the selection of grid cell size needs to
be smaller than the average wolf territory size. Neglect of these
fundamental findings inevitably leads to overestimation bias.

4.3. Centroid model determination

We found numerous problems and a lack of description in iPOM’s
methods for determining wolf territory centroids, making it im-
possible to replicate. First, Sells et al. [16] asserted a “fairly
certain” wolf pack centroid quality code [54]. That method was
neither described objectively nor on a case-by-case basis. In ad-
dition, there is little description of how the eight categories in
their pack information table [54] were used to scientifically verify
or justify wolf specialists’ demarcation of pack centroids. Second,
it is unclear whether they verified a “represented” wolf territory
centroid, which must be singular and known with certainty [16].
We also find no description of (1) how they used seven types of
information [16] to determine the spatial coordinates of a wolf
territory or a centroid without a sufficient sample of radio-marked
pack members and (2) how and if an assumed centroid was
used to verify hunters’ observations of wolf packs. Creel [55] also
recognized the logic flaw in that the AO model was developed
using centroids from the centers of territories determined by
movements of GPS-collared wolves, which are unavailable under
the current version of iPOM. Finally, Montana Fish, Wildlife, and
Parks (MFWP) admitted they did not record or archive hunter
reports, making it impossible to verify wolf observations, validate
the AO model, and reproduce iPOM. The lack of archived data by
itself makes Sells et al. [16] subject to retraction by the policies of
the journal inwhich itwas publishedbecause effectively the source
data do not exist.
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We also identified an additional source of double-counting of wolf
pack observations (the demarcation of two centroids for one ter-
ritory), which would cause a severe overestimation bias (see Sec-
tion 5.5). Without time recording and locating distinguishing marks
from hunter reports, the authors are unaware of how many of the
samehighlymobile andwide-rangingwolveswere detected in differ-
ent grid cells during the 5-week survey period. As such, subgroups
from a single wolf pack are recorded as separate (two or more) wolf
packs. Such double-counting errors are widely recognized in field
surveys because animals can move between neighboring sites on
the same day [56]. The rate of double- or triple-counting the same
wolves would logically increase with the time between surveys (up to
34 days apart in iPOM). It can be corrected using locationalmarking
devices like radio-collaring [57], which iPOM lacks. For birds [58],
with a similar territorial spatial system towolves, these false-positive
error rates were 49% for new (naive) observers when movements
were eliminated in a controlled setting. With double-observers, the
rate was still high at 39%, and the expert, experienced observer
rate was 9.5%. One can only imagine the false-positive error rates
reported by untrained hunters who inadvertently recollect their
passive observations of highly mobile, wide-ranging wolves, which,
moreover, can resemble sympatric coyotes and some domestic dogs
under field conditions. Despite their claim [16], we fail to see how
their AO model can correct for the misclassification of coyote pairs
because they are sympatric with wolf packs and select for many, if
not all, of their selected covariates.

5. AO model
Biologically and statistically, AO is the most critical submodel.
Hunter survey observations and centroids constitute the sample
data ingested annually into iPOM through the AO model, which
determines the area occupied by an assumedunique set of individual
wolf territories. With assumption testing, we identified three major
sources of model bias, which are different but related to the afore-
mentioneddatamodel errors. For iPOM’sAOmodel, they are (1) two
types of false-positive errors: misclassifications of non-wolf canids
and non-packwolves and double-counting in their sensitive centroid
model; (2) three types of closure violations during the 5-week late fall

survey; and (3) resolution bias due to the large grid cell size. Also, AO
is the primary variable determining NP (AO/TS) because TS is an
agent-based simulator that is not independent of AO (assumption
violation), does not ingest empirical data annually, and has as many
untested assumptions as it has decision rules. As such, we only
evaluated critical AO model assumptions that were suspected to be
sensitive (non-robust to failure) and are known sources that might
cause bias in AO, NP, and abundance. We also evaluated assump-
tions peculiar to the AO covariate submodel, which is required to
correct for false-positive detection errors.

To assess resolution bias, we conducted a simulation experiment
to assess the potential magnitude of the well-known bias due to a
large grid cell size (resolution). We could not complete our analy-
sis to evaluate the size (magnitude) of the other twomajor sources
of model bias, nor the overall bias in wolf abundance, because,
after request, we could not obtain the needed data and analysis
results from Sells et al. [16]. Nonetheless, we provide a qualitative
assessment of each source to disentangle its relative contributions
to bias. The extent to which their central AOmodel can correct for
all three model biases is contingent upon assumption violations,
the data model errors described above, and, most importantly, a
proper covariate submodel, which we evaluate below.

5.1. Additional assumption violations at the territory
scale

Here, we examine additional factors that cause bias in wolf abun-
dance at the spatial scale of a wolf territory. They are (1) an
inappropriate spatial sampling method for estimating the spatial
extent of wolf territories and (2) pack dissolution [19, 59, 60],
which amplifies the three sources of closure violations previously
described (Section 4.2) and detection errors (Section 4.1) that
result in overestimation of abundance.We demonstrate why these
factors are critically important when converting annual estimates
of the territory area (a) for each grid cell and (b) summed across
the state of Montana (e.g., see Figure 3), which, when combined
with the average TS, determines the number of wolf packs (NP
in Equation (1)) each year. A corollary to closure violation for
individual wolves is an unstated assumption that territories must
be stable (closure) during the late fall survey period.

Figure 3 • The simulation model of Sells and Mitchell [27] produced a simulated value of the total area occupied by wolf territories
(black region).
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The fundamental assumption underlying the first factor is that
hunter surveys appropriately sample grid cells to “estimate the
proportion of grid cells used bywolf packs during the late fall” [16].
This assumption is captured in the ergodic theorem as applied to
animal movement, which states that the average time an animal
spends moving across its home range is equal to the average
over the entire space [61]. If the MFWP’s hunter survey method
were valid, this would mean wolf pack observations from hunter
surveys constitute an unbiased, representative sample that repre-
sents the average movement process or time spent in their terri-
tories. This seems impossible because iPOM transfers unrecorded
locations of indirect information into a single centroid rather than
apportioning use by the location of samples and the effort invested
into obtaining those observations. But even if that step could
be argued to represent wolf territorial space use without bias,
several aspects of the average hunter’s observationsmake it highly
improbable for them to have reported a representative sample
of wolf pack observations in a stable territory, as described in
Section 4.1. This demonstrates the violation of fundamental rules
of unbiased scientific measurement because it is a convenience
sample from untrained observers [44]; hunters have possible mo-
tivations to exaggerate reports so that awolf hunting seasonwill be
inaugurated with a higher quota; data recording errors occur, not
least of which is the missing data itself; and hunters themselves
affect the behavior of wolves, which avoid hunting activities but
may be attracted later to wounded ungulate prey and gut pile
odors [62]. iPOM’s flawed sampling process is in stark contrast
to pre-designed ergodic sampling where trained biologists sys-
tematically track the movements of a representative sample of
radio-collared wolves, which can also suffer from sampling bias
when determining space use [63, 64].

Pack dissolution is the second territorial factor that causes in-
stability over large areas and violates closure assumptions both
demographically and geographically. Typically, one-third of wolf
packs dissolve after a breeding adult is killed [59, 60], which
causes abandonment of the territory (the extinction of a territory
centroid) as remaining pack members disperse. Dissolution usu-
ally happens during the initialmonths following breeder loss [60],
with extraterritorial movements occurring earlier. Thus, the tim-
ing, rate, and speed of dissolution mostly coincide with iPOM’s
late fall surveys because the rate and speed of dissolution increase
with a smaller pack size [60] due to human-caused mortality.
Overall, this effect causes increased movement across the adja-
cent eight grid cells (closure violation) surrounding the dissolved
pack’s cell(s). It also increases double-counting because hunters
may observe surviving wolves dispersing or traveling in search
of other wolves and mistakenly classify multiple wolves as the
presence of a pack.

A simple calculation illustrates the amplifying effect of pack disso-
lution on closure violation. Assume (1) an average dissolution rate
of 40%when a human kills a breeder in smaller packs [59, 60]; (2)
amortality rate of 20% for breeders ([54], Figure 9) during the fall
hunting season (early September to December), which is before
and during the 5-week late fall survey period; and (3) a population
of 1000 wolves arranged into 125 packs with a PS = 8. These
starting parameters yield ~10 dissolved packs, which produce 70
non-pack, non-breeding wolves that disperse as solo individuals,
groups of 2+ wolves, and other temporary interactions with other
wolves. Although this is only an 8% dissolution rate, it causes a
variety of movement types across grid cells (closure violation) by

(1) adjacent pack members, (2) scattered survivors of other disso-
lutions, and (3) other dispersers—all searching for an opportunity
to breed in vacated territories. Unless MFWP seeks absence data
from hunter reports and compares those to prior maps of known
packs, the agency will not detect true, newly vacated territories.

Although our hypothetical example likely overestimates the
double-counting during the fall survey, it does not include the
sources of double-counting identified in previous sections. Fur-
thermore, given the highly mobile, wide-ranging behavior of
wolves, we suspect that an 8% dissolution rate affects an area as
large as half the wolf range in Montana, as adjacent and more dis-
tant packs shift and disperse to compete for the vacant territory.
It is also important to realize that the effect of killing breeders
likely decreases the long-range dispersal (and gene flow) across
populations because it provides otherwise long-range dispersers
in saturated habitats, a nearby vacancy for a potential breeding
opportunity.

5.2. Simulation testing of resolution bias

We simulated the effect of grid cell size resolution for multiple
reasons. First, and foremost, was to isolate this known bias from
the closure bias by using stable territories from iPOM’s TS model
within a naive model where the occupancy probability (ψ) = 1.0
for any detection. Second, it gave us insight into how well their
AO model might correct for resolution bias due to the presence
of a covariate submodel that downsizes a grid cell area’s con-
tribution to the AO when summed across Montana ([16], equa-
tion 6). Third was to explore the possible nonlinear pattern of
sensitivity between resolution and overestimation bias. Fourth,
we sought to understand how their TS simulator works, as we
used it to represent the distributional dynamics of wolf territories
and strengthen our evaluation. Last, we sought to understand
the possible advantages of using the scaled occupancy argued for
wolves in Wisconsin [22] compared to iPOM.

The premise of Sells et al.’s [16] analysis is that their simulations
generate plausible territory layouts for determining the average
TS used in iPOM (Equation (2)). Thus, we repurposed their TS
simulator to generate wolf territorymaps using their code [16], re-
peating 10 times to generate 10 unique sets of wolf territory maps.
These served as example territories in our simulation experiment
to assess the direction and magnitude of the potential bias. While
the simulated maps do not correspond to actual wolf territories in
Montana, they do represent realistic territorial layout patterns and
suffice for our experiment.Figure3presents 1 of the 10 simulated
territory datasets from the TS simulator. In this simulation, the
total area of wolf territories (the black region) is 56,713 km2.
Dividing this area by the 127 simulated packs produces an average
territory size of 447 km2, which is consistent with, but smaller
than, the value of 484 km2 for the period 2014–2019 in Montana,
reported in Sells et al. [16]. Oddly, Sells et al. [16] cited work by
Rich et al. [65] in the same study area that reported an empirical
mean of 600 km2, ranging from 188 to 2207 km2. Therefore, we
question why they used the smaller, non-empirical territory size
produced by a simulator. Directly related, Creel [55] exposed an
error in Sells et al.’s [16, 39] analysis of TS used in iPOM. This
leads to the unjustified use of smaller TS values, which directly
causes an overestimate of wolf abundance.
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5.3. Direction of resolution bias and closure bias in wolf
occupancy modeling

We approximate the total area occupied (AO) by wolf territories
(the black area inFigure 3).We start with a grid cell overlay at the
coarse resolution of iPOM’s 600 km2 onto the wolf territory map.
Then, all cells that contain any detectedwolf pack observations are
assumed to be occupied (ψ = 1.0) and summed to produce a naive
AO. Logically, this will overestimate wolf territory size because
when a cell partially overlaps with a territory, the non-overlapping
areas within that cell are mislabeled as occupied. Figure 4 illus-
trates this “edge effect” at three different grid cell sizes. As grid
cell size increases, so does the area that is mislabeled as occupied.
However, it is unclear from Figure 4 alone exactly how much
bias is introduced. We also wanted to describe the relationship
between grid cell size and overestimation bias. So, for each of the
10 simulated territory maps described in the previous section, we
tested sample grid cell sizes ranging from 1 km2 to around 800
km2. Then, wemeasured areal bias by computing the resulting AO

values and comparing them to the actual area of wolf territories in
the 10 simulations.

The resulting increase in overestimation bias for AO is plotted as
a function of grid cell size in Figure 5. Resolution bias is highly
nonlinear and increases rapidly with cell size. The resolution used
in iPOM (600 km2) would overestimate AO and abundance by
around 150% (2.5×) if the dynamicmodelwith covariateswere not
used, which attempts to correct for overestimation biases (resolu-
tion and false positives). The average proportion that a corrected
grid cell contributed to AO in iPOM ~0.20, which indicated an
80% reduction (1−ψ) in the AO acrossMontana. This alsomeans
that slight differences in the average occupancy can amount to
significant changes in AO and wolf abundance. Even at a grid cell
size of 120 km2 or 20% of the grid cell size in Sells et al. [16],
the resultant resolution bias would cause a 50% overestimation
of abundance. Due to this, deficiencies in their covariates, and a
flawed centroid model, we doubt their 80% reduction (1 − ψ) ad-
equately compensates for the overestimation biases we identified,
and we encourage validation by Sells et al. [16].

Figure 4 • Simulation results that demonstrate the potential overestimation bias in AO at three different grid cell sizes. Wolf territory,
in blue, is copied from the example in Figure 3. The areal component in red designates unoccupied areas erroneously included in the
estimate of area occupied (AO). This would be the amount added to the AO if they applied a naive occupancymodel (no covariatemodel).

Figure 5 • Simulations indicate that larger sampling grid cells (resolution) lead to overestimating the area occupied (AO). Each
sample cell size range was tested with ten different (simulated) wolf territory maps. Like-colored points denote results from the same
simulations. Solid red vertical lines indicate the three example cell sizes shown above, and the dotted vertical line indicates the resolution
of the grid used in iPOM.
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Because our simulations, as well as those of Stauffer et al. [22],
demonstrate the positive bias caused by larger grid cell sizes, we
strongly suggest that iPOM incorporate a scaled occupancy model
that directly corrects for resolution bias by subsampling at, say, 20
km2 and 100 km2. The proper adoption of the SOM should avoid
the many errors identified by [22]. There are also other options,
such as dynamic scaled occupancy models [31] and structural
equation models (SEMs) [66], which are inherently compatible
because they provide means to make inferences on latent or
unobserved quantities based on observed data and provide an
excellent approach to building a non-deficient covariate model. In
addition to serious problems in theAOcovariatemodel, we further
questionwhether iPOM’s AOmodel is conditioned properly due to
a flawed centroid model. Miller et al. [12] indicated lower sample
sizes in the low-quality wolf habitat which makes up the large
majority of the habitat in Montana. Because of this and Creel [55]
noting that subtle ‘tuning’ by Sells et al. [16, 39] clearly shows
that large expanses of areas that were not known to be used by
wolves were included in the simulated territories, we assessed
whether minor effects in a model could cause significant biases.
To illustrate, take the eastern two-thirds of Montana, which is
not considered part of the current wolf range [67], and assume
ψ at only 0.025 across some 400 low-habitat-quality grid cells,
as partially depicted in Figure 1a,c of Miller et al. [12]. This alone
would add 10 packs (400 × 0.025) that do not exist. Based on
this, we recommend right-truncating the frequency distribution
of the grid cell occupancy probabilities. If wolf specialists are able
to verify a cell has a confirmed territory centroid for the “certain”
model, then one can use similar biological knowledge to assign a
zero probability.

5.4. Covariate submodels

The design and parameterization of the covariate submodels dic-
tate how any model corrects, under-corrects, or over-corrects for
bias. As such, we found two critical problems in iPOM’s covariate
submodels within their AO, TS, and PS component models: (1)
deficient parameterization (excluding known, important covari-
ates) and (2) the inclusion of mainly static covariates, which
renders the AO model incapable of properly correcting for the
overestimation biases we have identified. Themost important and
explicit assumption for covariatemodeling is to select aminimally
sufficient set of covariates (Figure 2) that independently causes
the response variable to change. This overriding assumption was
violated in all three of iPOM’s covariate submodels, which casts se-
rious doubt on the ability to correct for overestimation. Especially
with a newmethod, it is incumbent upon Sells et al. [16] to conduct
simulations or other biological testing on whetherψ estimates the
proportion of a stable territory in a grid cell.

It is striking that iPOM’s a priori selection of covariates is mis-
aligned with substantial research and common biological knowl-
edge about wolves’ distributional and abundance dynamics [68].
The AO model excluded obvious causal covariates like snowpack,
vegetation, and especially ungulate prey availability, which are
well-known predictors of wolf space use (AO and TS), especially
in late fall. Ungulate biomass is accepted as the primary predictor
of the abundance of wolves and obligate ungulate predators [69],
and access to forage predicts ungulate prey distributions. These
covariates, including annual ungulate surveys, are available from
MFWP; so, rather than providing a review of the problems with

iPOM’s covariate models, as in [55], we give an example illustrat-
ing these problems.

An example of the importance of using covariates that reflect
biological mechanisms in predictive models of abundance, that
includes numerous lessons for iPOM, is that of Moorcroft and
Lewis [70], who developed mechanistic home range models using
extensive wolf and coyote datasets, especially those that included
mechanical path movements (iPOM’s TS model does not). From
these models, Moorcroft et al. [71] specifically included prey
species densities by vegetation type and were able to accurately
predict the shift of one pack into the dissolved territory of a
neighboring pack. In a blind test (independent validation), the
resulting new territorial distribution matched that from intensive
radio-tracking. Nearly the same results would have been achieved
by including the ranked importance of the six habitat types from
other studies of habitat–prey associations, for example, by using
selection models for primary prey (e.g., elk and deer for wolves).

A substantial amount of research conducted regionally and con-
tinentally demonstrates the tradeoff between wolf selection for
landscape conditions that increase access to available prey, low
slopes, more open habitat, and roads and avoidance of hu-
mans [72–74]. These tradeoffs can be captured alongwith climate,
prey availability, and vegetation for the fall survey period. Instead,
Sells et al. [16] reduced the dimensionality of five correlated
covariates to the first principal component that explains 53%
of the variation. Hence, this deficient parameterization of the
AO covariate model captured mainly the effect of accessibility to
wolves by hunters. Additionally problematic was the static nature
of those covariates (forest cover, slope, elevation, low-use forested
and unforested roads). This severely limits the ability of the AO
model to respond each year to expected changes in climate, prey
availability, and vegetation, resulting in relatively constant model
output values year after year, especially if crucial dynamic input
parameters are excluded, as in the TS and PS models.

5.5. Untangling primary sources of overestimation bias

Each of the three major sources of biases we identified in their AO
model—false-positive errors, closure violation, and resolution—
causes a positive (overestimation) bias when assumptions are
violated. In order to understand and improve the false positives
in the AO model, we seek to detangle them and identify their
biological causation. As such, we identify three culprits that drive
these biases to inflate the AO and subsequently overestimate wolf
abundance: (1) substantialmortality before and during the late fall
survey season leading to delineating wolf territories where none
exist, (2) three sources of double-counting wolf territories when
subjectively determining centroids, and (3) deficient and static
covariate models.

The first culprit (#1) is insidious because it severely violates
closure during the surveys and adds to double-counting errors
that are already occurring due to uncorrectable misclassifica-
tions (#2). Both types of false-positive detection errors that we
identified lead to severe overestimation bias ([12, 75] for iPOM)
due to the sensitivity of the critically important assumption that
iPOM’s AO centroid model contains only the “certain” centroids
of singular wolf territories. Themissing but essential confirmation
step [76] should come froman independent source of observations
similar in place and time. For example, Miller et al. [12] used
data from tracking a sufficient sample of radio-collared wolves
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as confirmation in 2007–2010. Unfortunately, iPOM eliminated
the confirmation step and used circular logic that the centroids
of documented wolf packs were used in their “certain” centroid
model. Wolf specialists using cameras, sightings, tracks, howls,
verified wolf depredation sites, and “public tips” do not confirm
that their hand demarcation of territory centroids on amap comes
from “singularly” unique wolf packs because these observations
suffer from the same false-positive biases caused by culprits #1
and #2 above.

We cannot emphasize enough how critically sensitive AO esti-
mates are to even small amounts of false-positive errors, especially
double-counting, directly leading to substantial overestimation of
wolf abundance. McClintock et al. [77] found that false-positive
error rates as small as 1% of all detections caused severe over-
estimation of occupancy (AO), colonization, and local extinction
probabilities, even with experienced observers [78]. In a recent
study of gray fox [79], a false-positive error rate of 40% yielded
an abundance that was 4x greater than that when accounting for
false positives. The same authors conducted a simulation using
intensive sampling within spatially separated grids and confirmed
this high sensitivity: AOwas also severely overestimated with only
a 10% false-positive rate.

Although we could not obtain supporting data for the crucial
territorial centroid data model and hunter surveys to assess the
false-positive rates in iPOM, we examined Parks et al. [54] and
found evidence supporting double-counting errors. In the data
from2023, for example ([54], Figure 8), we noticed an unexpected
clustering of centroid locations typical of those from2021 to 2023,
a period of liberal wolf hunting with increased mortality and no
confirmation step for the centroids. We visually compared these
centroid locations with those from an earlier period (2007–2010)
when radio-collared wolves were used in a confirmation step
to correct and determine singular territory centroids at a time
at which wolf mortality was lower [16]. In the earlier period,
centroids were evenly spaced out, which is what you would ex-
pect from nearly exclusive wolf territories averaging 582 km2 in
600 km2 grid cells. This pattern of even spacing even held for
high-density areas indicated as saturated [12, 16]. To validate
this suspected clustering, we tallied a simple cluster statistic for
2007–2010 that resulted in an expected 4–7 grid cells annually
that contained twowolf pack centroids. In contrast, 2023, a typical
year of the later period, 22 grid cells contained two centroids, and
2 cells contained three centroids. This 5-fold increase in clustered
cells is likely due to double-counting errors (culprit #2 above).We
strongly recommend that a transparent analysis and validation of
this type be conducted and presented.

In addition to the absence of a confirmatory centroidmodel, iPOM’s
deficient and static covariatemodel (culprit #3 above) further limits
the ability of iPOM to correct for the significant overestimation
biases. Thus, we strongly recommend including the known causal
covariates needed to correct for them. Also, updating the dynamic
covariate values every year would better account for changing wolf
distributions in the fall and allow wolf abundance to respond to
annual changes in biological, climate, and landscape factors that
affect wolf occupancy. We also strongly recommend tracking a
sufficient sample of collared pack wolves (marked territories) to
provide the second-method confirmation step required for their
centroid model. This could correct for other problems we have
identified, including double-counting errors, sampling biases, and
informed colonization and extinction parameters. At a minimum,

iPOM methods need to include tracking data from a collared sub-
sample of pack wolves in three or four adjacent territories in three
to four clusters across Montana to test and verify numerous critical
assumptions and provide information on mortality during the fall
survey. Another obvious solution to reduce bias is to move the wolf
pack survey to the end of winter when double-counting risks are
lower and annual mortality has mostly occurred. Then, for several
reasons, trained volunteers and wolf specialists should be included
who properly conduct designed surveys of wolf observations and
wolf pack size during the standard winter period. This could also
include the collection of scat for DNA analysis, snow-tracking, and
individually distinguishable packs. Snow-track sampling reveals
pack behavior, recovers scat, is ergodic, and matches home range
determinations from tracking radio-collared red fox [80].

6. Territory size model
Here, we provide a more brief assessment of model bias in the
TS model because Creel [55] found an overestimation bias in
abundance with a reanalysis of the TS predictions versus em-
pirical estimates [39]. Creel’s analysis demonstrated that iPOM’s
TS simulator output deflates TS by 35%, thereby inflating wolf
abundance by the same amount. Using the TS simulator in iPOM
is a fundamental violation of scientific inference because it does
not ingest annual sample data from the target population of in-
ference. It is neither an estimator nor a prediction and should
be considered an uncalibrated index producing a nearly yearly
constant value since 2012 ([54], Figure 4). It is non-mechanistic
demographically and does not include annual mortality rates,
which significantly affect TS, PS, NP, and the LW rate. Although
wedonot recommendusing the outputs of their simulationmodel,
we do not understand why Sells et al. [16] use the TS output when
it also produces NP and AO, both used to determine abundance.
Because the TS simulator depends on the total number of wolf
packs and PS, it is circular logic to use the average territory size
to determine NP in iPOM. iPOM’s TS model diverged further
from empirical reality by developing a density identifier formula
to “identify the approximate degree of competition each year”
and “to avoid rerunning simulations every year” [16]. This is,
by definition, another ad hoc correction factor occurring outside
the original modeling procedures. Because the formula is directly
tied to territorial centroids, any error or bias in hunter surveys
or the centroid model is propagated through TS and abundance.
Finally, it would behoove Sells et al. [16] to reanalyze and correct
Creel’s [55] verification of the bias in predicting TS.

7. Pack size model
Similar to TS, we briefly assess the model biases of iPOM’s PS
model because of Creel’s evaluation [50]. An implicit assumption
in iPOM’s PS model is that it responds to impacts that increase
or decrease pack size. This assumption is violated because their
PS model does not ingest annual data on PS or the covariates
that are known to affect it, particularly mortality. An increase in
adult-causedmortality directly causes a decrease in pack size [54],
but their PS model does not include this known effect [59, 60].
In southern Montana and northernWyoming, the recent increase
in wolf-killing reduced pack size in five of six packs and caused
the dissolution of two packs [19]. In addition, colonizing packs
after dissolution from either natural or human-caused mortality
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often results in an initial pack size of only two that year. Col-
lectively, these errors and omissions result in two effects: (1) an
overestimation of PS, which directly overestimates abundance,
and (2) a PS model that does not respond to the certainty of
pack size reduction in the late fall and winter. Figure 5 in Parks
et al. [54] shows no significant change after 2016, where it only
varied between 5.3 and 5.4 wolves per pack. The data they used
in their regression analysis were from an earlier period when
mortality, especially from human killing [19], was less than that
in later years. This renders their model and validation irrelevant
to 2018 to 2024, when they had insufficient empirical data to
estimate PS. Furthermore, their PS covariate model is deficient
(see Section 10) and resulted in an expected constant output from
2012 to 2017 [54], a period in which the observed mean pack size
changed by ~25%. Creel [55] also demonstrated analysis flaws
similar to the regression error in TS. Due to high uncertainty in
the regression slope, Sells et al. [16] failed to show that their PS
model couldmakemeaningful predictions.We also note that their
Poisson regression response variable assumes values of 0, 1, 2,
and more; however, this distribution should be truncated at 2 or
more tomatch the definition of a pack. As a result of these solvable
problems, it appears their PS model is invalid, does not respond
to known annual changes, and overpredicts PS and abundance.

8. iPOM’s use of ad hoc parameters
iPOM uses numerous ad hoc parameters and decisions (adjust-
ments, uncalibrated indices, assumed constant values) spread
throughout its models. An ad hoc parameter, often referred to as
a correction factor, in statistical models is defined as a parameter
specifically introduced to adjust or address a particular issue
or question arising from the data analysis, rather than being a
standard or pre-defined part of the model framework. The same
goes for a subjective decision. These forms of model incoherency
lead to various problems, including bias in model selection and
comparison, model overfitting, model instability, and interpreta-
tion difficulty, and cast serious doubt on their ability tomake valid
inferences [81–83]. We highly recommend conforming to Ander-
son [44], who reviews the serious problems when using conve-
nience sampling and indices inwildlife studies. Any proxy variable
or index used in iPOM covariate models should be calibrated with
the true covariate of interest using, for example, double-sampling
theory [10]. If not, it produces unaccounted variance and likely
bias in their models. At the end of the Supplementary materials,
we provide a partial list of the ad hoc parameters and methods we
found.

9. Combining components to predict
abundance
We cannot calculate the magnitude of the overestimation bias in
iPOM’s prediction of wolf abundance because we do not have, or
were not allowed, the needed empirical data. Instead, we provide
a qualitative appraisal by assuming a realistic inflation of each
main submodel and its multiplicative contribution to the overall
overestimation of abundance to offer a range of probable bias.

For TS, we use a −35% bias based on Creel’s [55] analysis. For
PS, we chose a minimal +13% bias (4.7 instead of 5.3) because
their annual PS values do not reflect biological reality. For ex-
ample, increased human mortality before and during hunter sur-
veys (including pack dissolution) would lower the PS as in Sells
et al. [39]. Then, if we choose, say, a +33% bias for AO due to the
numerous errors and biases we documented (closure violations,
double-counting, and a deficient covariate model) that cannot
be fully accounted for, we arrive at a 2× overestimation bias of
wolf abundance. This means, for example, if the true wolf pop-
ulation were 550, iPOM would predict 1100. The overestimation
bias could be higher but would not likely exceed 3.5× because
double-counting wolf packs is unlikely to be more than double
(50% of, say, 120 packs results in a minimum wolf abundance of
300 wolves (60 packs× a PS of 5)). We provide these calculations
to encourage and guide Sells et al. [16] towards future corrections,
improvements, and simulations to determine themagnitude of the
bias.

Furthermore, iPOM has an additional reliability problem because
no empirical or independent validation of iPOM’s models and
abundance predictions was provided. Although Sells et al. [16]
compared their predictions to the POM and theminimum verified
packs, that is not validation nor verification because one cannot
use biased apples to validate biased oranges. This circular problem
parallels the iPOMmethodology developed by Rich et al. [21], who
claimed that hunter survey data offers an opportunity to monitor
wolves in Montana but provided no validation yet suggested that
occupancy models using hunter sightings needed monitoring to
verify presence. We similarly reject the assertion that iPOM’s
abundance prediction has to be higher than the verifiedminimum
number of known packs. Like the centroid determinations, mini-
mumcountswithout tracking collaredwolves in packs are plagued
with double-counting and other errors. Finally, an important
assumption—the independence of themodels—is violated because
the TS and PSmodels are linked to centroid determinations in the
AO model, and the TS model includes data used in the AO model.

We also use a simple assessment of iPOM’s output to test whether
its use of (1) static and deficient covariate submodels, (2) constant
ad hoc parameters that actually vary annually, and (3) substantial
changes in methodologies and input data (e.g., centroids) causes
iPOM to produce relatively constant abundance estimates after
2016 when wolf abundance peaked. Visual inspection of the re-
ported results on the AO, TS, and PS for 2007 to 2023 ([54],
Figures 3–5) raises red flags and supports our contention and that
of Creel [55]. Two distinct patterns are apparent: (1) dynamical
changes during 2007–2016when it appears that a proper centroid
model was used and (2) relatively little change from 2012 to 2023,
when iPOM’s methods changed substantially, a radio-marking
and tracking program for determining abundance was eliminated,
and wolf mortality increased substantially due to public hunting
and trapping. As expected, in the last 12-year period (2012–2023),
both TS and PS are statistically constant, varying by around 2–
3% [54]. AO did show some variability that was governed by two
factors: (1) annual hunter surveys and MFWP wolf specialists
determining the centroids and (2) an ad hoc density indicator
formula tied to the centroids. Nonetheless, the overall wolf abun-
dance did not change in six of seven regions from 2012 to 2023
([54], Figure 6).
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10. iPOM’s variance
We found numerous problems with iPOM’s estimates of variance
used to report the confidence interval for statewide wolf pop-
ulation abundance. Major problems were two-fold: (1) iPOM’s
method for estimating variance is incorrect because it does not
estimate abundance but predicts it and (2) the exclusion of com-
ponents of variance (input variables), which resulted in a severe
underreporting bias and the inability of iPOM to detect a change in
abundance. They also made a mathematical error in the variance
in their lone wolf rate, LW (Supplementary materials). Each of
these problems causes underreporting (bias), which, when com-
bined, results in a severely underreported confidence interval.

First, proper iPOM predictions have wider prediction intervals
than the incorrect confidence intervals Sells et al. [16] used for
parameter estimation. Althoughwewere unable to obtain the data
sources for each of the iPOM’s stated main variables (AO, TS, PS,
and LW) to calculate a proper prediction interval, we started with
the derivation of variance (and CVs) for each primary input vari-
able as a reality check on possible underreporting biases. We then
calculated a Delta method variance to approximate the relative
magnitude of the exclusion bias in iPOM’s variance used to report
the confidence interval (CI) for wolf abundance (Supplementary
materials).

iPOM’s prediction of wolf abundance is a random variable and not
an estimated parameter. Estimation and prediction are distinct
but related concepts in statistical modeling, each serving different
purposes and using differentmethods. As such, there is a substan-
tial difference between estimating a parameter (e.g., abundance
from a design-based survey sampling) and predicting a random
variable (e.g., abundance for a model-based design that often
includes covariates). Estimation focuses on estimating unknown
parameters of a model using existing data. Prediction involves
a prognostic outcome where the model is constructed to predict
for different conditions across space and/or time and uses new
data inputs (e.g., relevant covariates) not included in the original
sampled data. Also, when estimating a parameter, such as the
population abundance for a particular area (e.g., Montana), as the
sample size increases (e.g., more individuals are counted), the in-
formation about a parameter increases, and the uncertainty about
its value decreases; if all animals are counted, then the uncertainty
decreases to zero. However, for predictions of population size, as
the sample size for the sampled area increases, uncertainty about
the prediction for unsampled areas does not decrease to zero. The
same holds for iPOM’s prediction of total abundance. See [84, 85]
for a detailed discussion on predicting versus estimating the total
of a finite population.

Second is exclusion bias. Logically, excluding input variableswhen
determining variance leads to underestimation of uncertainty,
whether calculated directly, approximated linearly (e.g., the Delta
method), or calculated usingMonte Carlo simulation [86]. Includ-
ing all key input variables in iPOM—AO, TS, PS, and LW and
their covariate submodels—is necessary to capture uncertainty
propagation across space and time. Such exclusion errors will
result in severe underreporting (bias) of the prediction intervals.
Sells et al. [16] omitted the variance in (1) the entire TS model,
(2) the entire covariate models, (3) the covariates in the AO
and PS submodels, (4) numerous ad hoc correction factors and
methods, and (5) the covariance between their mainmodels. Even
if the application of a credible interval were appropriate, the

uncertainty (variance) of iPOM’s abundance estimate would still
result in amisleading underestimation of the true variance in wolf
abundance. According to scientific principles, a credible interval
would need to include at least the major components of variance
contained in the random variables of their multiple models and
multiple submodels by constructing a joint posterior distribution
over all relevant parameters [87].

An example of omitting variation in their covariate models is
the exclusion of the variance in their ungulate density index and
human density, which are based on sampling and estimates for
small areas that are then used to project the predicted density
across larger areas. At a minimum, estimates of the variance in
or distributions of the ungulate density index for different regions
and a variance for human densities should be included in the
territory size model. More problematic for their TS predictions
is that their highly theoretical territory formation model is based
on model agents assessing whether territories were economical
and adjusting TS according to model rules about theoretical com-
petition costs due to theoretical neighboring wolf packs. iPOM’s
abundance estimate did not include these substantial variance
components, which consists of rules with no reported empirical
data; the rules were calibrated bymatching themodel results with
desired wolf densities. Similar exclusion errors occurred in their
PS and later AO models.

To determine theminimummagnitude of the underreporting bias
in iPOM’s variance used to determine the CI [16], we include
the variance in empirically derived input values using the Delta
method [88]. As a reality check, to start, we examined the sensi-
tivity of iPOM’s variance to exclusion bias by adding the proper
variance in a model component, LW, using the empirical samples
in Sells et al. [16]. We concluded that iPOM’s CI was unrealistic
because the CV for LWat 10.2%was larger than iPOM’s CV of 5.5%
for wolf abundance (Supplementary materials). Based on this, we
proceeded to examine the main model components, AO, TS, and
PS.

Althoughwe could not obtain the actual sample data, we evaluated
the exclusion biases in iPOM’s variance (and CI) estimate further
by first determining the components of variance in its main input
variables by (1) using calculations for AO as we did for NP, (2)
extracted empirical data values by reading them from Figures 1.8
and 1.16 in Sells et al. [39] for TS and PS, and (3) using the LW
variance above (Supplementary materials). The resultant CVs for
their main model components AO, TS, PS, and LWwere 4%, 72%,
45.3%, and 10.2%, respectively, compared to iPOM’s CV for wolf
abundance at 5.5%.

We then proceeded to estimate theDeltamethod of variance (Sup-
plementary materials) for wolf abundance using iPOM’s variance
for NP (var = 79.7 for 161 packs) and the LW proportions (var =
0.039, mean = 1.120), combined with our variance estimate for
47 pack size samples (var = 6.5, mean = 5.63). The result was an
abundance of 1016wolves with a CI of 0 to 2243 and a CV of 45.3%
(an 8.4× underreporting bias), demonstrating iPOM’s inability
to detect any change in wolf abundance. The true variance (and
underreporting bias) in wolf abundance would be even higher be-
cause our minimum approximation does not include (1) a proper
prediction interval, (2) the variance in the excluded covariate
submodels, (3) covariance due to violation of component model
independence, (4) spatial and temporalmismatch of the variables,
and (5) uncalibrated indices and ad hoc correction factors. Also,
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iPOM’s variance for NP does not appear to include the variance
from TS because its CV (72%) is much larger than 5.5%. However,
we recommend, of course, that Sells et al. [16] transparently
calculate and share a proper prediction interval, along with all of
the data.

11. Coherence and reproducibility
The question “how good is your science?”—whether experiments
or statistical models—can be answered by “how well it predicts”.
This also measures the strength of inference [89]. For statistical
models, predictions are evaluated by determining bias (assump-
tion testing) and variance (Figure 1 and Figure 2), as well as
model coherence and reproducibility. Without an assessment of
these attributes, iPOM can neither be considered scientific nor its
predictions reliable.

11.1. Coherence

Although model coherency is an essential attribute for a com-
plex model like iPOM, it has several different but related mean-
ings. In predictive models, coherency ensures the reliability of
statistical inference through alignment with the study objectives
and design, consistency in data aggregation, and data sharing
between submodels and across levels [90]. The concept also in-
cludes covariate models in probabilistic judgments in Bayesian
ecological modeling approaches [91], inference in evolution [92],
and AI language models [93]. In population modeling, hierarchi-
cal and integrated population models are explicitly coherent be-
cause they are structurally designed with integration mechanisms
across domains and levels, allowing for consistent integration
and harmonization of different datasets within a single inferential
framework [28, 30]. Taken together, a coherent statistical model
reflects how samples can be consistently brought together with
other information within a model or between models under one
broader analytic framework (e.g., iPOM). Thus, coherency is an
intentional, consistent, and logically structured approach where
all model components and data align and flow harmoniously
from start to finish (design, sampling, data model, process model,
explicit and implicit assumptions, covariates, and output). Based
on these characteristics, iPOM lacks nearly every feature and step
in the structure and process needed to develop a coherent model.
iPOM’s lack of an explicit mathematical equation—a stochastic
model of the sample data and sampling process—that defines each
unknown parameter and its corresponding spatial and temporal
units is indicative of an incoherent model. Rather, iPOM attempts
to combine, not integrate, model components.

The most flagrant violation of coherency is iPOM’s ingestion of
information from outside the population for which it is making
inference. For example, iPOM ingests values from the TS sim-
ulator, not empirical sample values from Montana’s wolf popu-
lation. Such a mismatch causes bias and results in misleading
inference [11]. This also holds for iPOM’sMonte Carlo simulations
because iPOM’s data resampling efforts include data from popu-
lations outside of Montana or from a different time period [16].
Second, iPOM’s submodels are incoherent within themselves. The
TS and PS models (and LW rate) do not ingest concurrent annual
inputs of empirical samples from Montana’s wolf population. If
iPOM’s AOmodel dynamic [12] had included (1) a coherent link to
a properly designed and sampled datamodel, (2) a centroidmodel

froma sufficiently large sample of representatively sampled radio-
marked wolf pack members, and (3) a non-deficient covariate
model of known, causal covariates, it would be considered coher-
ent but only as a stand-alone submodel disconnected to the TS and
PS models. Finally, iPOM’s covariate models do not ingest annual
inputs from surveyed areas, and inferential yearly predictions are
not valid. Because of this, it is no surprise that iPOMproduces rel-
atively constant values yearly (since 2016) but with some variation
due to flawedhunter surveys and subjective centroid locations.We
found numerous cases of spatial and temporal mismatch within
iPOM’s covariate models and between them and the response
variable. Such mismatch or oblique problems are also pointed out
by Creel [55] and lead to unreliable and potentially misleading
conclusions because the covariates may not accurately capture
the conditions influencing the response variable at the time and
location of the observations [94, 95].

11.2. Reproducibility

Reproducibility is a fundamental hallmark of science related to
falsifiability. Just as scientific hypotheses and theories must be
subject to falsification or considered unscientific, a research find-
ing must be repeatable, or it cannot be regarded as reliable. Much
attention has been paid to failed efforts at replication [96, 97].
Here, we address the prerequisites for the replication attempts
applied to iPOM’s findings [16].

Before a specific finding can be replicated and confirmed by quali-
fied investigators following every step of the original methods, re-
producibility demands two tests of the original findings [98–100].
The first test is whether the procedures were described so that a
replication effort stands a chance of succeeding. If themethods are
incomplete, unclear, or impossible to repeat, one cannot succeed
in replication. IPOM fails this, as Sells et al. [16] include subjective
methods (hand-drawn centroids with subjective placements) or
unexplained methods (e.g., hunter surveys). The second test is
whether the data underlying the original finding exist. If the data
does not exist, they cannot support the original claim. Both tests
fail for Sells et al. [16], yet the missing data concern us the most.
The lead author of this paper had to pursue multiple private
communications with the senior author Sells and other coauthors
to elucidate the missing steps and data, yet guesswork remains
over 2 years since those communications began. Whether the
methods can be explained remains uncertain and is undoubtedly
unanswered by the published article. Therefore, we call for a
correction or editorial flag of caution about Sells et al. [16] at a
minimum. Correction may give way to a need for retraction if the
second test also fails, as described next.

Essential input data in Sells et al. [16] are hunters’ observations
of wolves. They represent the primary source of empirical obser-
vations of the current presence of wolves on the Montana land-
scape. Even though such observations cannot be verified to be true
wolves, the survey method used to collect those data has not been
sufficiently described and is therefore irreproducible. As such, one
cannot rule out, or correct for, double- or even triple-counting.
We do not know the standardized methods of collection or quality
control steps. Worse, the survey data do not exist, according to
communication from MFWP. In sum, the primary empirical data
based on which wolf abundance was estimated in Sells et al. [16]
appear not to exist anymore. If Sells et al. [16] do not confirm
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to the editors that the data exist, this would be grounds for re-
traction according to journal policies and the Ecological Society
of America’s code of ethics for authors. It also frustrates our
efforts at replication and improvement. That claim of open data
also demands a correction or published notice of concern by the
editors. Therefore, we conclude that iPOM as it currently reads is
irreproducible and unscientific and merits retraction.

12. Conclusions
For a variety of reasons, wolves are a poor candidate species for
the application of occupancy modeling. Their high mobility and
wide-ranging behavior ensure violation of sensitive assumptions
that lead to overestimation bias, especially geographic closure. Fur-
thermore, their complex social behavior, adding to already high
spatial and temporal heterogeneity as they traverse complex land-
scapes, makes it difficult at best to correct for detection errors with
covariate models. Yet tantamount to these issues is the fundamental
mismatch between a complex statistical model proposed for popu-
lation demography—iPOM’s abundance over time—and the incor-
poration of two spatial models developed for non-demographic ap-
plications. Occupancy modeling was designed to determine species
distributions and habitat relations, whereas iPOM’s TS simulator is
a theoretical agent-based model for simulating territorial behavior.
It is important to note that Smith and Boyd (the latter co-author
with Sells et al. [16]) concluded that iPOM should not be used to
determine wolf abundance and that alternative methods like genetic
capture–recapture should be applied [101].

The shoe-horning of iPOM’s main models resulted in an incoher-
ent mash-up of model components that lack several foundational
principles governing inference, any one of which invalidates its
use in wildlife decision-making. Based on our evaluation criteria,
extensive assumption testing, and the concepts governing valid
inference, there is overwhelming evidence that iPOM is unreliable.
A federal court agrees with this conclusion on largely independent
and qualitative grounds (Center for Biological Diversity et al. and
Western Watersheds Project et al. v US Fish and Wildlife Service
et al. 2025. U.S. District Court for the District Of Montana, 9:24-
cv-00086-DWM Doc 98, hereafter CBD & WWP v FWS 2025).
Although we could not estimate precisely the magnitude of the
bias in iPOM’s abundance predictions, the evidence indicates a
severe overestimation bias. At this point, we do not know the wolf
population size (abundance) in Montana, and iPOM’s variance
and CI are so severely underreported (at least an 8.4× bias) that
iPOM cannot detect a change in abundance. This results in the
worst-case scenario for managers and wolves: decision-makers
are misled because Sells et al. [16] claim accurate (low bias)
and precise estimates (Figure 1A), when iPOM yields neither
(Figure 1D). Sells et al. [16] also arrived at an uncommon situa-
tion in statistical modeling where the addition of covariates failed
tominimize bias (Figure 2), thereby increasing both the variance
and model error. iPOM further detracted from biological reality
by (1) using an incorrect statistical analysis for their PS and TS
models which, again, resulted in overestimation bias; (2) using
numerous ad hoc correction factors [44]; and (3) excluding sub-
stantial sources of variance in their input variables that ensured
that iPOM cannot detect a change if abundance declines to less
than 150 individuals. Again, the court (in CBD & WWP v FWS
2025) ordered the FWS back to the drawing board to use the
best available science to address the adequacy of state regulatory

mechanisms. The court expressed concern over the inadequacy of
Montana’s regulatory mechanisms to keep wolves from being put
back on the federal list of endangered species.

IPOM’s lack of the sampling design needed for reliable predictions
is at odds with 21st century standards and strong inference. At its
core, iPOM’s goal was to use hunter information as its primary
data source to estimate the fraction of a grid cell that belongs to
a singularly identifiable wolf territory, yet the “sample” data are
from surveys of deer and elk hunters. If those data can be recov-
ered, they nevertheless come from a set of untrained individuals
of unknown independence from each other, who had to recollect
the spatial and temporal accuracy of their observations of assumed
wolf packmembers. They (1) inadvertently and incompletely sam-
ple grid cells that are too large, (2) miss entire grid cells, and (3)
fail to provide the representative sampling needed to estimate the
space use of wolves belonging to stable territorial packs during
the late fall 5-week sampling period. IPOM’s approach cannot
correct these sampling biases, even with the crucial confirmation
step (proper centroid model) from a sufficient sample of collared
wolves from confirmed packs at that time.Moreover, the difficulty
classifyingwolves as packmembers and their natural spatial insta-
bility in late fall are amplified by the killing and disintegration of
packs before and during the survey period.

Although the original application of iPOM’s AO model during
the early 2007–2015 period appeared to correct partially for the
threemajor overestimation biases identified (false-positive errors,
closure violation, and resolution), an insufficient number of radio-
collared wolves and increased mortality after 2015 ensured vio-
lation of the highly sensitive confirmation step and the sensitive
closure assumption, respectively. Together, this resulted in severe
overestimation of abundance. In addition, the potentially correc-
tive covariate model was deficient and contained static covariates,
which limited its ability to correct for overestimation biases and
resulted in a constant annual output after 2015, when the en-
vironmental conditions changed. Here, too, the CBD & WWP v
FWS 2025 court chided the FWS for relying on population size
forecasts that did not make use of all of the available information
on Montana’s wolves through 2023.

Sells et al. [16] did achieve a part of their primary goal to sub-
stantially reduce their reliance upon expensive empirical field
sampling of wolves. However, in doing so, they ensured the failure
of their overriding goal to produce reliable predictions of wolf
abundance. Even more problematic is their claim [16] that valid
inference can be made without including sample data from the
population of interest [55]. There will always be significant model
errors and weak inferences when information comes from sources
not belonging to the sampled population. Perhaps the most con-
siderable lacuna is iPOM’s exclusion of annual mortality, which is
known to affect the primary input variables, AO, TS, PS, and LW,
and demographic rates of wolves, such as dispersal, emigration,
reproduction, and recruitment. These demographic forces might
be especially strong in late fall when the surveys are conducted.

Regardless of whether or not iPOM can achieve reliability, we
strongly recommend comparing its costs and reliability to al-
ternative methods. Any comparison should be weighed against
the economic benefits minus the costs of large carnivore popu-
lations, especially the ecological function of wolves in naturally
forming larger packs [19]. In a recent review of population abun-
dance models, Iijima [102] agreed with Royle and Dorazio [103]

ACADEMIA BIOLOGY 2025, 3 14 of 20

https://doi.org/10.20935/AcadBiol7924


https://doi.org/10.20935/AcadBiol7924

and Kery and Royle [104] that recent advances in hierarchical
modeling should become a fundamental standard framework for
the development, testing, and application of abundance meth-
ods because they provide a coherent structure and process. As a
result, and because of the exceptional difficulties in monitoring
carnivores and the need for reliability, recent investigators are
simultaneously combining two independent methods for abun-
dance estimation, one of which requires individual identifica-
tion (e.g., [105]). Even SECR models, considered the recent gold
standard for estimating carnivore abundance, can not be reli-
ably used without at least a substantial subsample of marked
individuals [106]. There are also reliable and robust capture–
recapture models that can be applied using various methods that
do not require physical restraint of wild individuals [107, 108].
Individual marks can be derived from DNA analysis and unique
natural markings from confirmed photos and resighting observa-
tions. With low-cost delivery systems, there are also biochemical
scat markers such as iophenoxic acid [109], chlorinated ben-
zenes [110], and isotopes, both stable and unstable [111]. Addi-
tional research could result in the delivery of visible dye marks
and patterns using drones or autonomous ground devices. In par-
ticular, non-invasive scat detection may be well worth revisiting
in light of genetic, laboratory, and field innovations that have
reduced the costs of individual detection [112]. A recent method
for successful genetic mark–recapture for wolves [113, 114] is
currently being tested in Montana, with encouraging preliminary
results. Additional biological information valuable to wolf man-
agement and conservation comes from non-invasive techniques
identifying individuals [115–119].
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